Fracking Fears Run Deep in the Karoo
Fracking Fears Run Deep in the Karoo
at OCTOBER 24, 2012
During the 1960s, with the hopes of finding oil, the state-owned company, Soekor, embarked on a series of exploration wells in the Karoo region of South Africa.
In 1967, one was drilled on Skietfontein, a farm in the Aberdeen district. According to Andre Els, a former Soekor employee who worked on this site, after reaching a depth of 4000 metres, they lost the drilling fluid that contained compounds such as bentonite, chrome lignosulfonate and caustic soda. Six weeks later, over 30 km away on a farm near Klipplaat, a farmer noticed a discoloration in his reservoir. Responding to the complaint, Els visited the farm and inspected the borehole. The water contained chrome lignosulfonate. With no possibility for this powerful deflocculant to be naturally occurring nor any other drilling taking place in the area, the drilling fluid had swiftly migrated over 30km and made its way to a water source. The unexplored deep geology of the Karoo briefly made itself known.
Fast-forward around 50 years and you’ll find the same area currently being eyed out for “fracking”, or, to avoid falling into the wordplay trap, more accurately referred to as shale gas extraction.
Why is the correlation between the Soekor wells of yesteryear and today’s applications for unconventional gas extraction important?
Meet Professor Gerrit van Tonder, a leading geohydrologist from the UFS Institute for Groundwater Studies who is better known in recent months as the Pro-fracking Professor who did a U-turn. Originally optimistic about shale gas extraction, van Tonder backtracked in June to warn that fracking would severely impact underground water supplies. Together with his doctoral student, Fanie de lange, they looked at the Soekor wells in order to anticipate the outcomes of shale gas extraction in the same region. In the area that Shell, Falcon and Bundu, have applied for drilling rights, there are 14 Soekor holes. Thus far, five of those are leaking fluids to the surface.
How is this possible? Don’t fluids stay put down there like well-behaved dinosaur juice should?
Strangely enough it seemed as though few had yet to put two and two together in the fracking debate. To release the gas, companies would be drilling horizontally at depths of around 3-5 km, using roughly 22 – 26 million litres of water per frack job, tons of fine grain silica sand (declared a “Health Alert” by US government agencies who are warning workers that exposure could lead to silicosis, an incurable lung disease, and the mining of which is a enormous issue in itself) and 60 – 330 tons of chemicals to fracture the rock…and here’s the pickle: doing all of that into an artesian basin.
Artesian basins are formed when underground water is stored under pressure and if drilled into, wells naturally produce an upward flow of fluid. In some cases you find a luxurious natural hot spring like those in Calitzdorp or Aliwal North, in other cases, the rising water would be unfit for human, animal or plant consumption because it contains high salt concentrations and possible heavy metal or radioactive elements inherent in the deep rock.
The SA 1/66 Soekor well is a prime example of the latter and a case study of what Van Tonder and de Lange are highlighting. Found on Sjambokkraal, a farm outside Merweville, drilling started on this well in 1966 but unsuccessful in finding oil at 11 000ft, Soekor closed the well with a large steel tap and moved on.
A few weeks ago, I joined van Tonder to visit and reopen SA 1/66 which is an eyesore on the Karoo veld as no vegetation has ever returned for a kilometer radius around the well. Within seconds after Oom Boetie Botes, the farmer on Sjambokkraal, threw his strength behind the rusty tap, a burst of air shot through the pipe and was followed by lukewarm, grey foul-smelling water. We at held a matchstick to the end of the tap and a large flame formed on the water. Judging by the heat of the water and the strength of the flame, the contents spewing out of the pipe emerged from deep below the earth’s surface.
Water samples revealed a salt reading of 8029 ppm for the old Soekor well. Situated downstream, roughly 1km away, one of Boetie Botes’ boreholes read 5480 ppm. With a salt concentration more than 8 times that of other boreholes further away on the farm, van Tonder is convinced the Soekor well is leaking and impacting the surrounding water source. Working with his students, van Tonder plans on carrying out further water analysis in the area. Thus far, it seems that they are onto something. Remember the aforementioned Skietfontein borehole near Aberdeen? The water well closest to the Soekor borehole has double the salt concentration compared to others on the property and the farmer has complained that his sable get sick when grazing in the fields surrounding the hole.
So, what is the significance behind these revelations? Essentially, the companies who are seeking to exploit possible shale gas reserves in the Karoo have just been dealt another enormous hurdle in any attempt to safely extract gas.
Here is a quick checklist that outlines how to best avoid contaminating underground water resources upon which the entire Karoo so heavily depends:
SURFACE
With the list of additives including chemicals that are capable of contaminating millions of litres of water in minute concentrations and others that are carcinogenic or known to impact the nervous and endocrine system, it would be best to avoid any possibility of these chemicals reaching the ground or being dispersed in the air.
You also have to deal with the fluid that returns to the surface once the well has been drilled. This flowback is laced with the injected chemicals and elements found naturally in the shale: concentrated salts; heavy metals such as lead, arsenic, barium and naturally occurring radioactive materials including uranium, radium and radon. In addition – because there’s always more to the fracking footprint – a triple whammy is formed in a chemical interaction between added chemicals and compounds found in the shale. As nasty to human health has is it is complicated to pronounce, 4-nitroquinoline-1-oxide (4-NQO) is one of the most potent carcinogens known to man and while it is not a chemical additive nor a shale resident, it has been discovered in shale flowback fluids. The effective rehabilitation of this fluid to its original standard has yet to be achieved and companies are still experimenting with possible disposal methods. Thus far, attempts have failed with enormous health impacts around frack ponds, collapsed sewerage systems and earthquake-inducing deep well injection disposal.
ALTERNATIVE UNDERGROUND PATHWAYS
No chemicals or hazardous elements found in the rock should find an alternative pathway via a natural fracture in the rock or, a possible curveball unique to the Karoo that the gas industry is yet to encounter elsewhere in the world: the hefty dolerite dykes and sills.
UNDERGROUND FLOW OF WATER
It would also not be ideal for foreign fluids to wind up catching a surf in the natural horizontal movement of underground water that many geologists, Karoo farmers and the aforementioned, Andre Els, will attest to. The slightest accident on one out of a thousand wells will not be isolated to that area. Unfortunately, according to independent hydrologists, it seems as though reservoir engineers working in the oil and gas industry fail to take this risk into account. According to Professor Shlomo Neuman from the Department of Hydrology and Water Resources at the University of Arizona, one could open any reservoir engineering text and “find nothing about leaky aquifers or cross-formation flow”. South Africa must have had one of those reservoir engineers contributing to the governmental task team because the Executive Summary Report states that “potable aquifers are expected to be farm removed from shale gas target formations and safe from contamination from injected tracking fluids because the latter are immobile under normal conditions”. Alarmed, I am tempted to say something about the blind leading the blind but I’m not going to.
ARTESIAN AREAS
The artesian geology introduces a further risk of encountering vertical movements of brine to the surface. As was seen on SA1/66, Van Tonder is most concerned about this upward migration once the well is abandoned and pressure increases in the reservoir resulting in the fluid rising toward water sources. By this stage, the company has abandoned the area just as, 44 years after Soekor’s activities, Boetie Botes is left with a barren area around the wellhead and salt concentrations 10 times beyond what is considered safe for human or animal consumption.
LEAKAGE AROUND THE WELLHEAD
The cement and steel casing around the wellhead, where the borehole meets the surface, needs to be designed and implemented to ensure that no drilling additives, brine or hydrocarbons exit the well – not while drilling or fracking or when producing gas or when the well is declared exhausted and forever abandoned. Current capping technology uses concrete that breaks down over time, just as roads and bridges made of concrete do but while the latter are maintained, old oil and gas wells become a forgotten series of ticking time bombs.
According to Dr Ron Bishop, the US Environmental Protection Agency estimates that 1 out of 6 abandoned oil and gas wells are already leaking toxins to the surface. In the wake of the Deepwater Horizon blowout in the Gulf of Mexico, EcoHearth commissioned accomplished journalist Steven Kotler to investigate the extent of the problem on land and across the planet. Kotler found that of a minimum of 2.5 abandoned oil and gas wells littering the US and an estimated 20-30 million around the world, due to fatally flawed gas and oil-well capping and lax industry and government oversight, hundreds and thousands are “hemorrhaging oil, brine and greenhouse gases into the environment”. James Northrup, a former energy investor and planning manager for Atlantic Rich Field, agrees: “All gas wells will eventually rust out and leak; it is not a matter of if, only a matter of when and how much.”
When the previous government embarked on the Soekor exploration in the 60s, many probably anticipated considerable reserves, economic prosperity and widespread employment opportunities. Fifty years later the Karoo is left with deteriorating well casings, possible underground water contamination and roads and well pads that have never disappeared in the semi-arid veld.
Would the shale gas industry introduce the same scenario? Would it present a short term energy solution that eventually dissolves into thousands of abandoned wells? Would economic gain and temporary job creation come at the longterm expense of those in the Karoo and outlying areas? And outside of groundwater contamination and failed cement casings, what if shale gas is merely a distraction from transitioning to a low carbon future and a threat to the growing concerns of irreversible climate change?
It is of upmost importance that the many governments across the world who are currently considering shale gas extraction adopt this longterm perspective. While global priority seems focussed on repairing struggling economies, we cannot invest in today by sacrificing tomorrow.
Jolynn Minnaar is the director of Unearthed, an independent documentary feature that investigates the global shale gas boom and the potential plans for gas extraction in South Africa. Committed to thorough research and widespread consultation, Unearthed has interviewed over 400 people on all sides of the tracking debate while filming across South Africa, Canada, the US and UK in order to gain an international perspective on the matter. The film is currently in post-production.